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ABSTRACT

This thesis investigates the application of adaptive

filtering at the NUWES test ranges. Two adaptive algorithms,

least-mean-squares and recursive-least-squares are studied.

To facilitate the investigation, a model of the test ranges

was developed. This model accounts for spherical spreading

and linear attenuation of the propagated acoustic signals as

well as the effects of doppler shift, multipath, and finite

propagation delay time. After describing the model, the

adaptive filtering algorithms are briefly explained. Then,

two schemes of adaptive filtering, adaptive noise cancellation

and adaptive line enhancement, are applied to the model.

Simulation results of the noise cancellation and line

enhancement schemes are presented for several scenarios.
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I. INTRODUCTION

A. THE NUWES TEST RANGES

The NUWES ranges are testing and evaluation facilities for

the Navy. They are comprised of a series of computer linked

underwater hydrophone arrays. The hydrophone arrays, in turn,

provide tracking of test vehicles launched from known

locations. The tracking signals emitted by the test vehicles

are received by the hydrophones and processed by the

computers. The recovered signal provides identification and

telemetry information.

As part of the scenario, a broadband countermeasure

produces noise that disrupts the tracking signals. This

interference reduces the test ranges' ability to recover

vehicle identification and telemetry information.

In an effort to lessen the effect of the counter-mea3ure on

the telemetry, some form of signal recovery is necessary.

This thesis investigates one type of signal recovery called

adaptive filtering.

B. PROCEDURE

In this thesis, an appropriate model of the NUWES test

ranges is first developed. This model accounts for signal

propagation loss, wideband noise sources, propagation signal

delay, signal multipath, doppler shift, and the frequency
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response of the hydrophones. Next, a brief explanation of the

recursive algorithms is given after which, the algorithms are

developed and applied to the model. Finally, detailed

simulation results of the tests conducted on several NUWES

test range scenarios are presented.

C. ORGANIZATION

The thesis contains five chapters and three appendices.

Chapter II develops the physical model of the NUWES test range

as well as the signal model used in the simulation. Chapter

III gives a brief explanation of the LMS and RLS algorithms.

Chapter IV develops the application of adaptive algorithms to

the model developed in Chapter II. Conclusions and

recommendations on the use of the algorithms at the NUWES test

ranges are presented in Chapter V. Three appendices are also

provided. Appendix A contains additional results that

supplement the discussion in Chapter IV. Appendix B furnishes

a flow chart of the major programs used in the simulation.

Appendix C contains a listing of the programs mentioned in

Appendix B.
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II. SIMULATION MODEL FOR THE NUWES TEST RANGE

A. BASIC SETUP

The simulation model is based upon the NUWES test ranges.

The ranges consist of numerous hydrophone arrays arranged on

the ocean floor. A typical layout of one of the ranges is

shown in Figure 1. The circular areas indicate the regions

within which the hydrophone arrays can reliably receive a

signal. The area covered by the reception circles surrounding

the hydrophones delineates the test range.

An acoustic source emitting a 75 kHz BPSK tracking signal

is attached to each test vehicle. The tracking signal is

received by the hydrophones and processed by station computers

to produce tracking data.

In a noiseless environment, all test vehicles can easily

be tracked; however, the addition of countermeasure noise

interferes with the tracking signal and corrupts the tracking

data.

To recover the corrupted tracking data, some type of

filtering is needed. This thesis investigates the use of

adaptive filtering to enhance the tracking of test vehicles in

the presence of countermeasure noise.

To aid the investigation and analysis of signal recovery,

a model of the NUWES test ranges was developed. This rodel

3
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Figure 1. A bydrophone arrangement typical of the NWES test
ranges.
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accounts for:

. Tracking signals

. Wideband countermeasure noise

0 Spherical spreading

* Linear attenuation

. Multipath effects from surface reflection

0 Doppler shift for fast moving targets

B. HYDROPHONE GRIDS

The model contains four subarrays arranged in a pattern

typical of the NUWES test ranges. With these four subarrays

and their attached hydrophones, any scenario in which

countermeasure noise is a factor can be examined.

Figure 2 displays a mesh plot of the subarray layout.

Each hydrophone subarray has a maximum effective range of 1500

meters. The range of coverage of each array is depicted by

the raised circular portion of the mesh plot. The distance

between hydrophone subarrays is 2500 meters. The hydrophone

subarrays themselves are depicted by the small protrusion in

the center of each circle.

The hydrophones and associated preamplifiers at each array

are physical devices with tinite frequency response

characteristics. In the simulation, the frequency response

of the hydrophone/preamp combination was modeled by a twelfth

order Butterworth bandpass filter. The filter's magnitude and

5



Figure 2. Mesh plot of the subarray layout.
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phase response are illustrated in Figure 3. These

characteristics closely match those of the actual system.

C. SIGNAL MODEL

The tracking signal is modeled as a 75 kHz BPSK signal

with a code length of 47 bits. Each bit lasts 93 gs,

resulting in a signal bandwidth of approximately 20 kHz. The

countermeasure is a broadband jammer modeled as white noise.

The signals are sampled at 300 kHz at the output of each

hydrophone. The tracking signal is

x(n) =Acos(2nf 0 t) (2-1)

where f0 is the carrier frequency (75 kHz) and A is a square

wave of fixed magnitude representing the binary code, whose

sign is positive for a 'one' bit, and negative for a 'zero'

bit.

1. Signal Attenuation

Signals lose power as they propagate through the

water. The transmission loss may be considered to be the sum

of two types of losses: spreading and attenuation. Spreading

loss accounts for the weakening of a signal as it spreads out

from a source. Attenuation loss accounts for absorption and

scattering. Each of these losses in signal power is

proportional to the distance traveled before reception at a

hydrophone. (Urick, 1983, pp. 99-103)
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Spherical spreading is a type of spreading loss in

which the signal power is reduced as it propagates unbounded

from a source in an unbounded medium. The signal is assumed

to propagate radially, and the intensity of the signal

decreases as the square of the range. As the power radiates

outward it must cover increasingly larger areas; this reduces

the power at any one point. The transmission loss due to

spreading is

Loss = 10 logr 2 = 20 logr (2-2)

where r is the range from source to receiver. (Urick, 1983,

pp. 100-101)

Unlike spreading loss, absorption loss varies

logarithmically with range. At frequencies above 10 kHz, the

attenuation of underwater signals due to sound absorption

becomes significant. Figure 4 (Clay and Medwin, 1977) shows

the attenuation profile of underwater acoustic signals in dB/m

versus frequency in kHz. Thus, the absorption loss for a 75

kHz signal is

a = 0.04r dB (2-3)

where r is the range.

Figure 5 depicts the power attenuation versus distance

for a 75 kHz acoustic signal propagating through the test

9
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Figure S. Mesh plot of the attenuated tracking and

- countermeasure signals.



range. Both types of losses, spherical spreading and

attenuation, are accounted for in the illustration.

2. Propagation Delay

In salt water, sound travels at about 1500 meters per

second (Urick, 1983, p.322). This relatively slow speed can

cause significant delay times between transmission and

reception of a signal. If a tracking signal source is at the

outer edge of a hydrophone coverage area, the delay would be

1 s. Propagation delays of this order can destroy any

correlation that might exist between signals received at two

different hydrophones. Thus, since correlation between

signals received at two different locations is a critical

feature of adaptive filtering schemes, propagation delay

becomes an important consideration. The delay time is given

by

T - r (2-4)
1500

where T is in seconds and r is the range traveled in meters.

3. Multipath

Signals arriving at a receiver via multiple paths can

cause constructive or destructive interference. Since the

hydrophones are mounted on the ocean bottom, only the multiple

paths caused by surface reflection of the signals is

considered. These multipath effects are taken into account

12



when generating both the tracking and countermeasure noise

signals. A delayed and attenuated version of the noise signal

is added to the original noise signal. However, the tracking

signal is transmitted at discrete time intervals and the

reflected signal is typically received in an interval that

does not overlap with the time interval in which the direct

signal is received. Thus, after the reception of the direct

path signal, the subsequently received reflected tracking

signal can be identified and safely ignored.

4. Doppler Effect

The frequency of a received signal depends on the

relative motion between source and receiver. The relationship

between the transmitted frequency and the received frequency

is given by (Urick, 1983, p. 322)

f' = f(2-5)

where c is the sound speed and v is the relative speed of the

vehicle. The frequency shift is

Af a ±0.69Hz/(knot)-(kHz). (2-6)

With a maximum speed of 50 knots (about 26 m/s) for the

vchicle, the associated doppler shift at 75 kHz is ± 2.6 kHz.

The sign of the shift depends on whether the signal source is

moving toward or away from the hydrophone.

13



III. ADAPTIVE FILTERING

Adaptive filtering provides a method of recovering a

desired signal in additive noise when the signal statistics

are either unknown or are slowly varying with time. If the

first and second order signal statistics were known, then a

fixed optimal filter such as the Wiener filter could be used.

However, without complete knowledge of the signal statistics,

some form of estimation of those statistics is required. Two

algorithms that help estimate filter coefficients under these

conditions are least mean squares (LMS) and recursive least

squares (RLS). (Haykin, 1984, p. 2)

The Wiener-Hopf algorithm provides the basis of these two

methods. The Wiener-Hopf equation for estimating a finite

impulse response filter weight vector a is given by (Haykin,

1984, p. 32)

= R1 I (3-1)

where R. is the autocorrelation matrix of the input signal and

rd is the cross-correlation vector between the desired signal

d(n) and the received input signal x(n). Adaptive filtering

schemes fundamentally try to approximate the weight vector of

the optimal filter by adjusting it "on the fly".

14



A. LEAST MEAN SQUARES (LMS) ALGORITHM

The LMS algorithm is based upon the method of steepest

descent and the knowledge that the mean-square error forms a

paraboloid in the filter coefficient space. The error e(n) is

defined as the difference between the desired signal d(n) and

the filter output y(n) (see Figure 6)

e(n) = d(n) -y(n) (3-2)

where

y(n) = XT (n) a (3-3)

and x(n) is the vector of observations (the received signal).

Thus, the mean-squared error is

J = E-e 2 (n)]. (3-4)

A plot of J versus a, called the error surface, is a

paraboloid in shape. Expanding equation (3-4) gives

j = O 2 -2,TZ +.a+Tiza. (3-5)

Differentiating the mean-squared error with respect to the

weight vector produces the gradient vector V

=a 2, 2RXa" (3-6)

15
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The gradient vector points in the direction of steepest ascent

on the error surface. Based on the gradient search or

steepest descent method the filter weight vector is

recursively updated as follows

1

a(n+l) = a(n) +-[-V(n)] (3-7)
2

where - V(n) points the filter weight correction toward the

minimum point on the error surface and g is the step size

parameter. Successive corrections in the direction of the

negative gradient vector eventually minimize the mean-squared

error and lead to an optimum filter weight vector. (Haykin,

1984, pp. 93-102)

B. RECURSIVE LEAST SQUARES (RLS) ALGORITHM

While the LMS algorithm is based on a stochastic

formulation, the RLS algorithm is a finite data formulation

based method. It is computationally more expensive than the

LNS algorithm, but it is known to converge to the optimal

solution significantly faster than the LMS algorithm. (Haykin,

1984, p. 149)

The sum of the squared errors between the desired signal

d(n) and the filter output y(n) is given by

17



r n
e (d -a (3-8)

Differentiating with respect to the weight vector and setting

the resulting equation equal to zero gives

aJ_ 2 (dj -,7z )z --, 0. (3-9)a

Solving equation (3-9) leads to

l~n n = Z n (3-10)

where

n

Rn = (xi T) (3-10a)

is the input autocorrelation matrix and

n
rn )(3-10b)

is the cross-correlation vector between the filter input and

the desired signal. Now, Rn and r can be written as

18



n-nn

and

( 
-2

Using equation (3-12) to rewrite equation (3-10) we have

RnJ; n 2, ._ n n  (3-13a)

Substituting Ra._ = and then adding and subtracting

x>' r on the right-hand side of (3-13a) yields

'erA +RaZ+(n- T _). (3-13b)

The tern in parenthesis on the right-hand side of equation (3-

13b) is a close approximation to the defined error and is

denoted by e(n:n.). Simplifying (3-13b) and solving for the

weight vector gives

+R- n (3-14)

Fquation (3-14) provides a recursive formula with which to

update the weight vector. However, evaluating Rn-  is

19



computationally expensive. The matrix inversion lemma,

commonly used to recursively update the inverse correlation

matrix, is given by

- (3-15)1 + xT(n)Ri(nl)

For notational simplicity, define

k n - Rn-xn = Sn1x(n). (3-16)
1 + XT(n) Rnl1 x(n)

Substituting (3-16) into (3-14) and (3-15) yields

.an = Ln-i kn-e(n:n-1) (3-17)

and

= R - k XT(n) R_ (3-18)

respectively. Equations (3-17) and (3-18) provide recursive

formulas for updating the weight vector. (Haykin, 1986, pp.

385-387)

C. RLS VERSUS LMS

There are some basic differences between the RLS and LMS

algorithms. Both of these algorithms recursively adjust the

weight vector to minimize the mean-squared error. However,

20



the algorithms differ in the way they update their respective

weight vectors.

The LMS algorithm updates its weight vector based on the

product of the error signal, the filter input, and the step-

size parameter. Furthermore, the step-size parameter, along

with the input signal, determines the speed of convergence for

the weight vector. The choice of the parameter is constrained

such that

0 < V < 2 (3-19)
Amax

where I M. is the largest eigenvalue in the correlation matrix

R . The product of the scalar step-size parameter and the

gradient vector produces a vector with which the filter weight

vector is adjusted. (Haykin, 1984, pp. 100-103)

While the LMS filter weights are adjusted using a scalar

transformation of the observations, the RLS filter weights are

adjusted using a matrix transformation. Also, the LMS

adjustment vector contains information available from the

current iteration only, while the matrix used in adjusting the

RLS filter weights is an estimate of the autocorrelation

matrix for all of the past data. Therefore, the RLS filter

weights undergo a higher order adjustment then the LMS filter

weights, causing the RLS method to converge faster. (Haykin,

1984, pp. 148-149).

21



The superior performance of the RLS algorithm, however, is

attained at the expense of increased computational complexity.

The number of multiplications per iteration required for the

RLS algorithm is on the order of 3M(3 + M)/2 where M is the

filter order. In contrast, the multiplications per iteration

required for the LMS algorithm is on the order of 2M + 1.

(Haykin, 1984, p. 149)
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IV. ADAPTIVE FILTERS FOR THE NUWES TEST RANGES

This chapter discusses two adaptive filtering schemes, the

adaptive noise canceler and the adaptive line enhancer. Each

scheme is developed from a simple lossless model to a complete

model for the NUWES test range. Simulation results are

presented for various scenarios in this development. Note

that the term "noise" used throughout the chapter refers to

the countermeasure signal, and the signal-to-noise ratio (SNR)

is defined as

SNR = 10 LOG10[ _Ex2 (n)] (4-1)

where E[x 2 (n)] is signal power, and 02 is the noise

(countermeasure) power.

A. ADAPTIVE NOISE CANCELER

The adaptive noise canceler consists of two inputs. The

first input, the primary input, contains the desired signal

corrupted by noise. The second input, or reference input, is

derived from a source at which the tracking signal is weak,

but contains noise which is highly correlated with the noise

in the primary input. The reference signal is adaptively

filtered to maximize its correlation with the primary signal,

23



then subtracted from the primary input to cancel the

countermeasure noise. (Widrow, 1975, 1692-1693)

1. Noise Cancellation of an Ideal BPSK Signal

The adaptive noise canceler configuration for a 75 kHz

BPSK signal in broadband white noise has the form depicted in

Figure 7. Since the signal and noise have comparable

propagation delay times, zero propagation delay is assumed for

both the signal and countermeasure noise in the initial

simulation. The signal received at the tracking array is the

tracking signal corrupted by countermeasure noise. At the

same time, the reference array receives only the

countermeasure noise. Once received, the signals are passed

to the adaptive noise canceler as the primary and reference

signals, respectively. Figure 8 displays the time and

frequency plots of the received and recovered signals. As

seen in the signal spectrum plots, the noise that was present

in the input signal is attenuated in the recovered signal.

2. Doppler Shift with ANC

The ANC scheme shown in Figure 7 can be used to

process the doppler shifted BPSK signals. The noise canceler

does not remove the doppler frequency shift, but removes the

noise from the frequency shifted tracking signal. Figure 9

illustrates the recovery of a doppler shifted BPSK signal.

24
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3. Multipath Effects on ANC

Signals transmitted from an underwater source can

propagate to the receiver via multiple paths. In this thesis,

it is assumed that the surface reflected signal and the direct

path signal comprise the multipath signal. The reflected

signal is a delayed, sign inverted, and attenuated version of

the direct path signal. Both the countermeasure noise signal

and the tracking signal travel via these multiple paths. The

reflected countermeasure noise increases the overall noise

variance, the amount of which depends on the path lengths and

the associated attenuation.

Unlike the countermeasure noise signal, the tracking

signal is sent in discrete bursts with quiet time in between

bursts. As such, the reflected tracking signal, when

received, does not overlap in time with the direct path signal

and can be disregarded by the NUWES tracking station. Figure

10 depicts a noise cancellation scheme incorporating the

multipath situation. Since the noise is white, the multipath

noise in the desired signal is uncorrelated with noise in the

reference. The received signal spectrum in Figure 11

illustrates the addition of correlated and uncorrelated noise

to the desired signal. In the recovered signal spectrum, the

noise uncorrelated with the reference is still present.

28



I..~i 
cc~'

>I

CO 0iCa
4-'

C Ca
2~(

C

C V) c

CC

Co + +

Fiur o. Nos cnclato shee inoroatn
multipat0

I-9



40

I-

NC

CL.

30



4. Signal Propagation Delay

The ANC functions on the premise that some correlation

exists between the noise in the primary signal and the noise

in the reference signal. However, signal propagation delay

destroys the correlation between broadband noise signals.

Therefore, to allow the noise canceler to function with delay,

the noise correlation must be restored. To reestablish the

noise correlation, either the primary or the reference siqnal

must be appropriately delayed. For realtime tracking, the

delay must be applied to the reference signal. Delaying the

primary signal would not permit realtime processing.

Therefore, if delaying the reference noise, the countermeasure

noise propagation time to the reference receiver must be

shorter than the propagation time to the primary receiver.

Thus, some form of local reference is required for the

countermeasure noise. The local reference can be obtained by

placing a receiver near the countermeasure noise source.

If realtime tracking were not a consideration then one

of the nearby non-tracking hydrophone subarrays with a large

noise signal could be used as the reference receiver. In this

case, the first signal received, primary or reference, would

be delayed to achieve maximum correlation.

5. The Overall Model for ANC

Figure 12 illustrates the overall simulation scheme

incorporating delays, multipath, and correlation. The
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tracking signal and the countermeasure noise propagate with

delay to the tracking array. In addition, a reflected,

attenuated, delayed version of the countermeasure is received

at the tracking array. The sum of these three signals

comprise the corrupted tracking signal, which is in turn

passed through a bandpass filter representing the tracking

array. This filtered signal represents the primary input to

the adaptive filter. The reference signal varies from the

primary signal because it contains no tracking signal.

The correlator depicted in Figure 12 adjusts the delay

of the signal received at the reference array to maximize the

correlation between the primary input signal and the relerence

input. The error between the filter output and the primary

input signal becomes the recovered tracking signal.

Figure 13 shows the output of the system at a signal-

to-noise ratio (SNR) of -10 dB. (Additional graphs at

different values of SNR are included in Appendix A.) This

scenario presumes that correlation between the noise in the

primary signal and the reference signal exists only between

the direct path noise. Therefore, the recovered tracking

signal contains the uncorrelated, surface-reflected noise.

B. ADAPTIVE LINE ENHANCER

The Adaptive Line Enhancer (ALE), illustrated in Ficire

14, differs from the adaptive noise canceler in that the

reference signal x(n) is derived from the input signal d(n)

33



oo

I C

I 0

C40

ir ~ 4)

- O"prumf

Figure :13. The received and recovered signals for the

complete noise ancellation scheme [BNR = -10 dB].

34



+ I~i

Figure 14. The basic adaptive line enhancer.
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using a delay.

The input signal is a narrowband signal corrupted by white

noise. Since white noise has a narrow autocorrelation

function (theoretically an impulse), the delay used in

producing the reference signal removes the correlation between

the noise components of the primary and reference signals.

However, the narrowband signal has a wider autocorrelation

function and retains its correlation despite the delay.

The output of the adaptive filter is the correlated

portion of the primary and reference signals. This output is

subtracted from the primary input signal to minimize the error

signal.

The ALE scheme used to recover the tracking signal is

shown in Figure 15. The input to the ALE is the sum of the

BPSK tracking signal and the broadband countermeasure noise.

However, the filtering effect of the hydrophone reduces the

bandwidth of the countermeasure noise to about 20 kHz.

Therefore the noise in not broadband, nor is the tracking

narrowband. In fact, the noise bandwidth is equal to the

bandwidth of the tracking signal. Since the ALE is effective

only with a narrowband signal in broadband noise, the ALE will

not be able to recover the tracking signal. Figure 16 shows

the output of the ALE when trying to recover the tracking

signal.

A whitening filter inserted after the hydrophone will not

improve the recovery of the tracking signal. Since after the
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hydrophone, both signals have the same bandwidth, the

whitening filter broadens both signals, and the ALE will not

be able to recover the tracking signal.

C. PROBABILITY OF ERROR COMPARISONS

Monte Carlo simulations were run using the complete signal

models developed above. The simulations used signal-to-noise

ratios of 0, -5, -10, -15, and -20 dB. The recovered

signals were heterodyned with a coherent source then low pass

filtered to remove the higher frequency components. Once the

bits were recovered, they were compared with the original bit

pattern to determine the number of bits in error.

At each SNR level, for both ANC and ALE schemes, the

process was repeated 100 times. The tracking signals were

represented by a random bit pattern of 47 bits. Thus, at each

SNR, there were 4700 bits. The total number of bits in error

throughout the 100 trials were accumulated. Figures 17 and 18

display the percentage of bits correctly recovered as a

function of SNR. On both figures, the 'x's mark individual

recovery percentages for each of the 100 trials while the

solid line is the overall percentage of bits correctly

recovered. Also, for comparison, probability of error results

were obtained for the case in which no adaptive filter was

used. From this case, the ALE and the ANC schemes are

compared as shown in Figure 19.
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The adaptive noise canceler consistently provided about 4

dB of signal gain above the 'no filter' case. At 0 dB SNR the

probability of an error is about zero percent. As the SNR is

decreased to -20 dB, the probability of error increased to

about 23 percent.

On the other hand, the adaptive line enhancer attenuated

rather than recovered the tracking signal. The performance of

the ALE for this type of signal was worse than if no filter

had been used. This poor performance was due to the broadband

nature of the tracking signal.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY OF RESULTS

This thesis investigated adaptive filtering for the

recovery of vehicle tracking signals in the presence of

countermeasure noise. A model of the NUWES test ranges was

developed to which the adaptive filtering schemes were

applied. This model included a 75 kHz BPSK signal to simulate

the tracking signal and white noise to represent the

countermeasure. These signals were subjected to propagation

losses, propagation delays, multipath effects, and doppler

shifts.

Two adaptive filtering methods were examined: adaptive

noise cancellation and adaptive line enhancing. The first

scheme, adaptive noise cancellation, employs two inputs. The

first input, the primary input, contains the tracking signal

corrupted with countermeasure noise. The second input, the

reference input, contains countermeasure noise only. Since

the noise in the reference input is correlated with the noise

in the primary input, the ANC cancels the noise, thereby

improving the received tracking signal.

In the simulation, a reference receiver was placed near

the countermeasure noise source to ensure that the propagation

time for the reference input was shorter than that for the
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primary input. Therefore, the delay used in aligning the

signals was applied to the reference and not to the primary

input, allowing realtime processing of the tracking signal.

Results of a Monte Carlo simulation are depicted in Figure

19. The horizontal distance between the ANC line and the 'no

filter' line is a measure of the processing gain. The

adaptive noise canceler provided about 4 dB of processing gain

across the 0 to -20 dB SNR range. The results show that the

correlator used in the noise canceler was unable to correlate

the surface reflection signals.

The second filtering scheme investigated, the adaptive

line enhancer, recovers narrowband signals from corrupting

broadband noise. However, the BPSK tracking signal used by

the NUWES test stations has a bandwidth of over 20 kliz.

Furthermore, the filtering effect of the hydrophone diminishes

the bandwidth of the countermeasure noise to 20 kHz. The

similarity of these two bandwidths prevents the ALE from

recovering the tracking signal. Figure 19 shows that the line

enhancer fails to provide any signal gain. In fact, signal

recovery worsened when using the line enhancer.

B. RECOMMENDATIONS

For the model developed in this thesis, the adaptive noise

canceler provides significant noise attenuation. However, to

implement the filter, minor modifications to existing range

equipment must be made. To track in realtime, some form of
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local countermeasure noise receiver must be used to furnish

the reference input. If realtime tracking were not a

consideration, then one of the nearby non-tracking hydrophone

subarrays with a large noise signal could be used as the

reference receiver. In this case, delay is applied to

whichever signal is received first, primary or reference, to

achieve maximum correlation.

The adaptive line enhancer would be easier to implement at

the NUWES test ranges as it requires only one receiving

hydrophone array. However, an adaptive line enhancer is

effective only with a narrowband signal in wideband noise

(Haykin, 1984, pp. 18-19, Widrow, 1975, pp. 1711-1712). Thus,

recovery )f the signal in its present form is not feasible

with t'ie line enhancer. However, if the signal could be

spectrally compressed into a narrowband form, adaptive line

enhancement could be a viable filtering scheme.
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APPENDIX A. ADDITIONAL RESULTS FOR TH2 ANC
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Figure 20. The received and recovered signals with no
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APPENDIX B. PROGRAM FLOW

A. ENVIRONMENT PROGRAMS

SETUP: Sets the parameters describing the environment

---- . NUWES: Creates the environment

I---- BOTM: Places the hydrophones

----- SCENE: Calculates SNR's and delays

----- RZ: Creates the signal sources

----- TRAKARAY: Determines the
tracking array

----- DISTANCE: Calculates distances
to the arrays

----- LVLS: Computes SNR's at the
arrays
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B. FILTERING PROGRAMS

DOIT: Sets the parameters describing the filtering

---- . FILT: Simulates the filter

----- DESIRED: Produces the signals used in the
filter's primary input

----- WAVE

----- JAM

----- RCVD

----- BANDPASS

----- FILTER

----- REFERENCE: Produces the reference input

----- RCVD

----- FILTER

----- ADAPT: Filters using either RLS or LMS
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APPENDIX C. PROGRAM LISTINGS

A. PROGRAMS THAT CREATE THE SCENARIO

1. Setup

% This is the main program that sets the scenarios of the
% NUWES tests
clear
% variables:
cmdpth=200; % the depth of the countermeasure
sdpth=100; % the depth of the signal
cncol=35;
cmrow=20; % the starting position for the

% countermeasure
scol=25;
srow=35; % the starting position for the signal

%**************** call the functions ****************

[z,zs,zcm,sdelay,cmdelay,SNRS,TA,RA]=nuwes...
(cmdpth,sdpth,cmcol,cmrow,scol,srow);

% Returned variables:

% z = the grid bottom with no signals for
% mesh plotting
% zs = the signal source vrbl for mesh
% plotting
% zcm = the interference vrbl for mesh
% plotting
% sdelay = matrix of the delays for the signal
% source
% cmdelay = matrix of the delays for the
% countermeasure
% **** Note *** the delays returned are relative. The
% shortest delay in each matrix has been subtracted from all
% elements in the corresponding array. This reduces the
% actual size of the data set required to model the system
% without changing the model.

% SNRS is a matrix of the four following values in order
% 1 - snrdt = SNR for the tracking array direct path
% 2 - snrrt = SNR for the tracking array reflected path
% 3 - snrdr = SNR for the reference array direct path
% 4 - snrrr = SNR for the reference array reflected path
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% **** The above order is followed in all vectors used *

% TA - the chosen tracking array number
% RA = the chosen reference array number

% ARRAY LAYOUT
% col -- > 0 ............... 70
% row
% 0 Al
%
% .A3
%
% A2
%
% .A4

70

2. Nuwes

function [z,zs,zcm,sdelay,cmdelaySNRS,TA,RA]=nuwes...
(cmdpth,sdpth,cmcol,cmrow,scol,srow)

% variables:
% cmdpth = the depth of the countermeasure
% sdpth = the depth of the signal
% cmcol; cmrow = the starting position for the
% countermeasure
% scol; srow = the starting position for the signal

% z = the grid bottom with no signals for
% mesh plotting
% zs = the signal source vrbl for mesh
% plotting
% zcm = the interference vrbl for mesh
% plotting
% sdelay = matrix of the delays for the signal
% source
% cmdelay = matrix of the delays for the
% countermeasure
% **** Note *** the delays returned are relative. The

% shortest delay in each matrix has been subtracted from all
% elements in the corresponding array. This reduces the
% actual size of the data set required to model the system
% without changing the model.

% SNRS is a matrix of the four following values in order
% I - snrdt = SNR for the tracking array direct path

% 2 - snrrt = SNR for the tracking array reflected path

% 3 - snrdr = SNR for the reference array direct path

% 4 - snrrr = SNR for the reference array reflected path

% **** The above order is followed in all vectors used **
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% TA = the chosen tracking array number
% RA = the chosen reference array number

ARRAY LAYOUT
col --> 0 ............... 70

row
0 Al

%I. A3
%
%. A2

%
% . A4

70

araydpth=400; % the depth of the array
soundspd=1500; % speed of sound in water is 1500 m/s
M=[-30 30]; % the mesh orientation
sdb=186; % the signal level in dB re uPa
cmdb=sdb+20; % the countermeasure level in dB re uPa

axis=('square');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%[X,Y,sl,s2,s3,s4,xmax,ymax,dx,dy,z]=botm;
load bottom

% botm creates:
% X = the x portion of the mesh grid
% Y = the y portion of the mesh grid
% sl,2,3,4 = the position of the arrays in meters as
% measured from the top left corner (0,0)
% xmax = the max number of mesh intervals in the x
% dir
% ymax = the man number of mesh intervals in the y
% dir
% dx = the spacing in meters between intervals in
% the x direction
% dy = the spacing in meters between intervals in
% the y direction
% z = the botm grid with radius circles and arrays

[SNRS,cmdelay,sdelay,TA,RA,zs,zcm)=scene...
(cmdpth,sdpth,araydpth,soundspd,sdb,cmdb,cmcol,...
cmrow,scol,srow,X,Y,dx,dy,sl,s2,s3,s4);

3. Botm

function [X,Y,sl,s2,s3,s4,xmax,ymax,dx,dy,z]=botm
% X = the x portion of the mesh grid
% Y = the y portion of the mesh grid
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% si,2,3,4 = the position of the arrays in meters as
% measured from the top left corner (0,0)
% xmax = the max number of mesh intervals in the x dir
% ymax = the man number of mesh intervals in the y dir
% dx = the spacing in meters between intervals in the
% x direction

dy = the spacing in meters between intervals in the
y direction

z = the botm grid with radius circles and arrays

% this subprogrdm will return the bottom configuration of
% the NUWES test range. The model of the bottom will
% contain only four sensors. This is sufficient to model
% all desired cases of signal vs countermeasure position.
%

% create the bottom grid of four offset sensor arrays with
% a 1500 m detection radius. Each sensor is 2500 meters
% apart measured center to center.
% The upper left hand corner is (0,0).

% The positions of the sensors in (x,y) coords with x being
% the horizontal axis are: ( in meters)

sl=[1500 1500];s2=[4000 1500];s3=[2750 3665];s4=[5250 3665];

%

% s3

% s2

% s4

% Now, the mesh for the bottom will be created
% The grid is sampled every 10 meters to decrease the
% required points

xmax = 70; % the maximum number of samples in the x
% direction

ymax = 70; % the maximum number of samples in the y
% direction

range=7000; % the range length
dx=range/xmax; % the distance between x sample points
dy=range/ymax; % the distance between y sample points
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% Set up the x-y grid

xg=l:xmax;X=ones(xg)'*xg;
yg=l:ymax;Y=yg'*ones(yg);
z=zeros(xg);

% now put in the rings for the sensors

for x=l:xmax
for y=l:ymax

if ((x*dx-sl(1))^2 + (y*dy-sl(2))A2) <= 1500A^2
z(x,y)=5;

elseif ((x*dx-s2(1))A2 + (y*dy-s2(2))A2) <= 1500^2
z(x,y)=5;

elseif ((x*dx-s3(1))A2 + (y*dy-s3(2))A2) <= 1500^2
z(x,y)=5;

elseif ((x*dx-s4(1))A2 + (y*dy-s4(2))A2) <= 1500^2
z(x,y)=5;

else
z(x,y)=0;

end
end

end

% put in the array markers
z(sl(l)/dx, sl(2)/dy)=10;
z(s2(1)/dx, s2(2)/dy)=10;
z(s3(1)/dx, s3(2)/dy)=10;
z(s4(1)/dx, s4(2)/dy)=10;

4. Scene

function [SNRS,cmdelay,sdelay,TA,RA,zs,zcmj=scene...
(cmdpth,sdpth,araydpth,soundspd,sdb,cmdb,...
cmcol,cmrow,scol,srow,X,Ydx,dy,sl,s2,s3,s4);

% variables:
% SNRS is a matrix of the four following values in order:
% 1 - snrdt = SNR for the tracking array direct path
% 2 - snrrt = SNR for the tracking array reflected path
% 3 - snrdr = SNR for the reference array direct path
% 4 - snrrr = SNR for the reference array reflected

path
% cmdelay = matrix of the delays for the

countermeasure
% sdelay = matrix of the delays for the signal

source
% TA = the chosen tracking array number
% RA = the chosen reference array number
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% ARRAY LAYOUT
col -- > 0 ............... 70

row -
0 Al

. A3

A2

A4
% 70

%%%%%%%%% Range and dB for countermeasure %%%%%%%%%%%%%%

[Rcm,zcm]=Rz(X,Y,dx,dy,cmcol,cmrow,cmdb);
% create a noise source and place it within the bottom
% mesh. Then find ranges to ncise source and the dB re uPa
% level at each range using spherical spreading and linear
% attenuation.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% Range and dB for signal source %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Rs,zs]=Rz(X,Y,dx,dyscol,srow,sdb);
% create a signal source and place it within the bottom
% mesh. Then find ranges to noise source and the dB re uPa
% level at each range using spherical spreading and linear
% attenuation.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% find the tracking array %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The tracking array is the array closest to the signal
% source

(TA,RA,clsdt,dcmdt,dsdr,dcmdr]=...
trakaray(sl,s2,s3,s4,Rs,Rcm,zs,zcm,dx,dy);

% find the array closest to the signal source and the
% non-tracking array with the lowest SJR
% A = matrix of array positions
% TA = the chosen tracking array number
% RA = the chosen reference array number
% dsdt = direct distance to tracking array from
% the signal
% dcmdt = direct distance to tracking array from
% the countermeasure
% dsdr = direct distance to reference array from
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% the signal
% dcmdr = direct dist to reference array from
% the countermeasure

%%%%%%%%%%% find all of the distances and times %%%%%%%%%%

% general form
% [dtd,dtr,drd,drr]=distance(d2t,d2r,araydpth,dpth)
% dtd = direct distance to tracking array
% dtr = reflected distance to tracking array
% drd = direct distance to reference array
% drr = reflected distance to reference array

% d2t = flat distance to tracking array
% d2r = flat distance to reference array
% araydpth = depth of the array
% dpth = depth of the signal source
%

% NOTE: All depths and distances are in meters

% find distances and times for the countermeasure

[cmdtd,cmdtr,cmdrd,cmdrr]=...
distance(dcmdt,dcmdr,araydpth,cmdpth);

cmdist=[cmdtd,cmdtr,cmdrd,cmdrr];
cmdelay=cmdist/soundspd;

[sdtd,sdtr,sdrd,sdrr]=distance(dsdt,dsdr,araydpth,sdpth);
sdist=[sdtd,sdtr,sdrd,sdrr];
sdelay=sdist/soundspd;

% decrease the delays such that the shortest delay is zero
cmdelay=cmdelay - min(cmdelay);
sdelay=sdelay - min(sdelay);

%%%%%%%%%%%%%% compute the SNR levels %%%%%%%%%%%%%%%%%%%
at the arrays

% general form:
function (snrd,snrr)=lvls(sdb,cmdb,dsd,dcmd,dsr,dcmr)

% lvls computes the signal to noise levels for the
% reflected and the direct paths to the array for which the
% distances are given.
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% variables:
% snrd = SNR for the direct path to the array

snrr = SNR for the reflected path to the array

sdb = the dB level of the signal source
cmdb = the dB level of the countermeasure source
dsd = distance from the signal direct
dcmd = distance from the countermeasure direct
dsr = distance from the signal reflected
dcmr = distance from the countermeasure

reflected

% find the SNR for the tracking array
[snrdt,snrrt)=lvls(sdb,cmdb,sdtd,cmdtd,sdtr,cmdtr);

% find the SNR's for the reference array
[snrdr,snrrr]=lvls(sdb,cmdb,sdrd,cmdrd,sdrr,cmdrr);

SNRS=[snrdt,snrrt,snrdr,snrrr);

B. PROGRAMS THAT PRODUCE THE SIGNALS AND DO THE FILTERING

1. Doit.m

% doit
% variables
% SNR Signal to Noise Ratio
% fl filter level
% D the delay for the adaptive line enhancer
% old old = 1 then use previously calculated vrlbs
% old = 0 create new vrbls
% seed the seed value for the noise generation
% pass pass = 1 then pass just the filter coeff and
% inverse corr matrix to next trial (saved in
% filtcoeff. ie save filtcoeff a Rinv)
% code 47 ones and zeros as desired
% filttype filter type
% 0 = lms

1 = rls
blocks the number of blocks of data produced
D the delay for the adaptive line enhancer

D = 0 no ALE
D > 0 use the ALE

%clear
%SNR=; % set by start.m
%fl=; % set by start.m
%D=; % set by start.m
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%seed=; % set by start.m

old=O; % if old = 1 then vrbls.mat must be the variables
% from the previously run case.

pass=O;
%code=[ones(l,47)];
code=[l 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 ...

1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1];

filttype=l;
blocks=l;
[sn,dn,yn,en,J,seed,code,xn,f,fs,a,h,t,bits,Rinv,fl,SNR,...
tbase,bitsbase,blocks]=filt(SNR,fl,D,old,seed,pass,code,...
filttype,blocks);

save vrbls % vrbls.mat is used when old=1

% sn the signal from the torpedo
% t the time index
% f the waveform frequency
% fs the sampling freq
% J the jammer signal
% J2 the delayed jammer signal (set delay below)
% sd the propagated torpedo signal
% sj the propagated jammer signal
% dn the desired received signal sd+sj
% bc,ac the butterworth filter coeffs
% yn the filter output
% en the desired signal - the filter output
% xn the reference input
% a the adaptive filter coefficients
% h the computed wiener filter coefficients
% bits the bit index for the x-axis
% Rinv the correlation matrix for the adaptive
% filter

2. Filt

f u n c t i o n
[sn,dn,yn,en,J,seed,code,xn,f,fs,a,h,t,bits,Rinv,fl,SNR,...
tbase,bitsbase,blocks]=filt(SNR,fl,D,old,seed,pass,code,...
filttype,blocks)
% this program runs the filter routine

% calls: desired produces the desired signal
% and assorted variables needed
% throughout the program

% ref produces the reference signal
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% adapt does the adaptive filtering and
% produces the output

taps calculates the wiener filter tap
weights for the noise assuming
the noise is stationary for the %

sample period

%%%%%%%% PRINT OR NO PRINT AS THE PROGRAM PROGRESSES %%%%%%

p1=0; % if pl = 1 then plot graphs. match pl in the
% next loop down

%%%%%%%%%%%%%%%%%%%% CALLING DESIRED %%%%%%%%%%%%%%%%%%%%%%
% DESIRED will produce the waveforms used throughout the
% program

if pl==l
msg='entering desired.m'
end
%%%%%%%%%%%%%%%% load the old vrbls here %%%%%%%%%%%%%%%%%

% Old variables are loaded when passing values from one
% program run to the next program. Use old variables when
% you want to expand the data set w/o increasing the sample
% size.

if old==l % old = 0 then create new values
% old = 1 then load the last set of vrbls

load vrbls;
pl=l;old=l;
tmax=t(length(t)); % get the max time in the last

% iteration
t=tbase + tmax; % correct time for number of the

% last iteration
bitmax=bits(length(bits)); % get the max bit number
bits=bitsbase + bitmax; % correct bit number for

% iteration
[rw,co]=size(a) ;
a(l,:)=a(rw-fl,:); % this sets the filter

% coeffs to the final
% values from the last use.

else % create new values
[sn,t,f,fs,J,J2,sd,sj,dn,bits,bc,ac,tbase,bitsbase]=...

desired(SNR,code,blocks,seed);
end
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%%%%%%%%% end of if-then %%%%%%%%%%%%
% desired creates:
% sn the signal from the torpedo
% t the time index
% f the waveform frequency
% fs the sampling freq
% J the jammer signal
% J2 the delayed jammer signal (set delay in
% desired.m)
% sd the propagated torpedo signal
% sj the propagated jammer signal
% dn the desired received signal sd+sj
% after the bandpass filter
% (if you want no BPF then go into desired.m
% and comment
% out the filter line and activate the line
% below it)
% Also, you can add a reflected jammer into dn

bits the bit numbers for the x axis
bc,ac butterworth filter coeffs
tbase the time base

% bitsbase the base scale for the bits

if pl==l
msg='leaving desired.m'
end
%%%%%%%%%%%%%%%%%%%%%%%%% LEAVING DESIRED %%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% CALLING REFERENCE %%%%%%%%%%%%%

if pl==l
msg='entering ref.m'
end

if old ==O
if D==O

[xn]=ref(J,bc,ac); % change J to J2 when time delayed
% change J2 to J when no time delay
% set the delay in desired.m
% change J to J+J2 when adding a
% reflected jammer

% The following linea are for the adaptive line enhancer

elseif D>O
[dn]=hdyne(dn,t,f); % mult the received signal

% by the local osc and put
% thru LPF
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delay=D; % the amount of delay for

% the ALE

xn=[zeros(l,delay) dn(l:length(dn)-delay)];

end

% end of the adaptive line enhancer variable adjustment

end

% reference creates:
xn the reference signal for the adaptive filter

if pl==l
msg='leaving ref.m'
end
%%%%%%%%%%%%%%%%%%%%%%%%%% LEAVING REFERENCE %%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% CALLING ADAPT %%%%%%%%%%%%%%%%%%%
if pl==l
msg='calling adapt.m'
end

%%% setup new situation data for entering adapt %%%

if old==O

% the program will enter this loop only if
% new data is being used and the filter is adapting from
% tap weights of all zeros (initial conditions). If the
% program does not enter this loop, then the filter will
% adapt to the data using and improving upon the old tap
% weights.

a(l,:)=zeros(l,fl); % start the filter coeffs with
% all zeros

Rinv=200*eye(fl,fl); % setup of the inverse
% correlation matx

if pass == 1 % pass = 1 means that the filter
% coefficients are passed to the
% next array but the noise and
% other signals might have changed

load filtcoeff % retrieves 'a' and 'Rinv'

[rw,co)=size(a); % make the initial weights for the
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% filter equal to the
a(l,:)=a(rw-fl,:); % final values from the last use.

end
end

%%%%%%%%%% choose an adaption method %%%%%%%%%%%%%

if filttype == 0
[en,yn,a]=adaptlms(dn,xn,fl,a); %lms method

elseif filttype ==1
(en,yn,a,Rinv]=adaptrls(dn,xn,fl,a,Rinv); %rls method

end
% Creates:

% en the error between the desired output
% and the filter output. This is our
% filtered signal
% yn the output of the adaptive filter
% a the filter coefficients. Each row
% is the filter coefficients as time
% progresses.
% Rinv the inverse of the correlation matx. This
% variable is passed to avoid the large
% variations at the start of a new iteration.

save filtcoeff a Rinv % variables used to pass parameters
% between arrays or between trials

if pl==l
msg='leaving adapt'

end
%%%%%%%%%%%%%%%%%%%%%%%%% LEAVING ADAPT %%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% ENTERING TAPS %%%%%%%%%%%%%%%%%%
% Computes the wiener filter tap weights
if pl==l
msg='entering taps'

end

%[h]=taps(sn,xn,dn,t,fl); % h = tap weights for wiener
% filter assuming that the
% noise is stationary
% in the sampling period

if pl==l
msg='leaving taps'

end
%%%%%%%%%%%%%%%%%%%%%%%%% LEAVING TAPS %%%%%%%%%%%%%%%%
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3. Desired

function [sn,t,f,fs,J,J2,sd,sj,dn,bits,bc,ac,tbase,...
bitsbase]=desired(SNR,code,blocks,seed)

% assembles the desired signal
% calls: wave to produce the signal from the torpedo
% jam to produce the noise from the jammer
% rcvd to produce the received signal at the
% array
% bandpass to create the filter coeffs modeling the

hydrophone
filter applies bandpass filter to the signals

% Creates: sn the signal from the torpedo
t the time index

% f the waveform frequency
% fs the sampling freq
% J the jammer signal
% J2 the delayed jammer signal (set delay
% below)
% sd the propagated torpedo signal
% sj the propagated jammer signal
% dn the desired received signal sd+sj
% bc,ac the butterworth filter coeffs

(sn,t,fs,f,bits]=wavecode(code,blocks);
%produces the signal from the torpedo
%provides:
% sn = the signal
% t = the time index
% fs = the sampling freq
% bits = the bit numbers for the x axis

%SNR in db used to scale the noise

tbase=t; % the base set of time used for adding to
% iterations

bitsbase=bits; % the base set of bits used for adding to
% iterations

K=(10(-SNR/20)) /sqrt(2);
J=K*jam([t t],seed)/2; % produces the noise from the

% jammer
J2=J(1317:1317+1315); % produces the noise for the

% reference with a delay
J=J(1:1316) ;
[bc,ac]=bandpass(f,fs); % prcduces the bandpass

% filter coeffs
% bc = the numerator coeffs
% ac = the denominator coeffs
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path=l;
[sd]=rcvd(path,sn); % produces received signal at the

% array
path=2;
[sj]=rcvd(path,J); % produces received jammer at the

% array
path=3;
[sj2]=rcvd(path,J2); % produces received reflected jammer

% at the array

% produce the desired signal (comment out three of the four)
% (remember to change the reference signal in filt)
%dn=filter(bc,ac,sd+sj); % use this line for BPF
%dn=filter(bc,ac,sd+sj+sj2); % use this line for BPF with

% reflected jammer

dn=sd+sj; % use this line for no BPF
%dn=sd+sj+sj2; % use this for reflected

% jammer w no BPF%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% path = propagation path
% sd = the propagated torpedo signal
% sj = propagated jammer signal
% dn = the combined signal + noise
% after the bandpass filter

4. Ref

function [xn)=ref(J,bc,ac)
% assembles the reference signal
% calls: rcvd to produce the received signal at the
% array

% Plots: none

% Creates: xn: the signal received at the reference

path=3; % chooses the propagation path
[xn]=rcvd(path,J);
xn=filter(bc,ac,xn);

% produces received signal at the
reference

% path = propagation path
% J = original jammer signal
% xn = the combined signal +
% noise after the bandpass
% filter
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5. Adaptlms

function [en,yn,a]=adaptlms(dn,xn,fl,a)
% this function will adapt the filter parameters using the
% Widson-Hopf algorithm (LMS)

% dn the desired signal
% xn = the reference signal
% fl = the filter order

u acceleration parameter
% a = the initial filter coefficients

% get the max length of the data vectors for loop counter

nend=length(xn);
if length(dn) > nend

nend=length(dn);
end

% pad the data vectors with enough zeros for the loop

xn=[xn zeros(l,nend-length(xn)+fl)];
dn=[dn zeros(l,nend-length(dn)+fl)];

%***** LMS METHOD *********
% enter the loop. the loop adjusts the filter coefficients
% with each iteration and computes error: dn-yn=en.

u=.0005;sigsq=O;

for n=l:nend
yn(n) = a(n,:) * xn(n:n+fl-l)'; % yn for each time step
en(n) = dn(n) - yn(n) ;
delofa= -2 * en(n)*xn(n:n+fl-l); % delta of a used to

adjust
% filter coeffs in LMS

%%%%%% The forgetting factor %%%%%%
% sigsq=.9*sigsq + xn(n:n+fl-l)*xn(n:n+fl-l)';
% un=u/sigsq;

a(n+l,:)= a(n,:) - u*delofa; % The next filter coeffs

end

6. Adaptrls

function [en,yn,a,Rinv]=adaptrls(dn,xn,fl,a,Rinv)
% this function will adapt the filter parameters using the
% Recursive Least Squares algorithm
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% dn- the desired signal
% xn = the reference signal
% fi the filter order
% en = the error signal (our output)
% a = the adaptive filter tap weights

% get the max length of the data vectors for loop counter

nend=length(xn);
if length(dn) > nend

nend=length(dn);
end

%pad the data vectors with enough zeros for the loop

xn=[xn zeros(l,nend-length(xn)+fl)J;

dn=tdn zeros(l,nend-length(dn)+fI));

% ***** RLS METHOD *********
% enter the loop, the loop adjusts the filter coefficients
% with each iteration and computes error: dn-yn=en.

for n=l:nend

yn(n) = a(n,:) * xn(n:n+fl-1)'; % yn for each time step
en(n) = dn(n) - yn(n);

k = ((Rinv * xn(n:n+fl-l)') / (1 + xn(n:n+fl-l)*..
Rinv*xn(n:n+fl-l) '));

Rinv = Rinv - k*xn(nn+fl-1)*Rinv;

a(n+l,:) = (a(n,:)'+ k * (dn(n)-xn(n:n+fl-l)*a(n,:)'))'

end
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